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A B S T R A C T   

Soil visible-near infrared (vis–NIR) spectra are complex and modeling soil properties can be challenging. They 
can suffer from additive and multiplicative noise, they are hyper-dimensional and highly collinear, making their 
analyses and interpretation sometimes difficult. Here, we introduce the Gaussian pyramid scale space as a multi- 
resolution approach for denoising spectra, reducing dimensionality, and improving the interpretability and ac-
curacy of spectroscopic machine learning. We also used the approach to analyse contextual interactions between 
different resolutions and the stability of feature importance across different resolutions. Using an Australian data 
set and the German data in the LUCAS spectral database we found that with a single Gaussian scale that rep-
resents a relatively coarse spectral resolution, we could estimate organic carbon, clay and pH as accurately as 
with multiple Gaussian scales, or using all resolutions. This indicates that, in the vis–NIR range, there are no 
relevant interactions between resolutions, which simplifies interpretations. We conclude that the Gaussian 
pyramid scale space can help to model soil properties with spectral machine learning, improving both accuracy 
and interpretability. Because the Gaussian pyramid approach is computationally efficient, it can also be used for 
preprocessing and knowledge discovery before more elaborate modeling is applied.   

1. Introduction 

Soil visible-near infrared (vis–NIR) spectra are complex and difficult 
to model. They can suffer from additive and multiplicative noise 
(Stenberg et al., 2010) and they are hyper-dimensional and highly 
collinear, making their analyses and interpretation challenging. 

The information that the soil vis–NIR spectra contain is in the shape 
and intensity of their diffuse reflectance (or inversely, their absorptions) 
that represent the interactions of the soil material with electromagnetic 
radiation. The data consist of reflectance values in adjacent narrow 
wavelength intervals. To extract the relevant information from the data 
is not trivial, not at least because the data is strongly correlated. 
Commonly, techniques for dimensionality reduction such as partial least 
squares (PLS, Wold et al., 2001) are used for modeling and prediction. 
The challenge for the analysis of vis–NIR reflectance spectra is therefore 
how to extract useful information from the spectra, which consists of 
localised physicochemical features, and ‘noisy’ and strongly correlated 

data. 
Here, we present an approach based on the Gaussian pyramid scale 

space (Burt and Adelson, 1983; Behrens et al., 2018a; Behrens et al., 
2018b) for preprocessing soil spectra. The Gaussian pyramid is a hier-
archical dyadic sequence of spectral covariate datasets, where a coarser 
scale or resolution, also called octave, is generated by reducing the 
wavelength count by one half (Burt and Adelson, 1983), following a 
Gaussian filtering step. 

This approach is related to wavelet analysis (Bruce and Li, 2001; 
Shao and Ma, 2003; Jacques et al., 2011; Lindeberg, 2015), which have 
been used in several studies on soil spectroscopy, e.g. Viscarra Rossel 
et al. (2016), Ge et al. (2007), Viscarra Rossel and Behrens (2010) and 
Song et al. (2021). Specifically, they share the property that they denoise 
and decompose a signal at specific scales or resolutions, which can 
improve the quantitative analysis of spectra for prediction (Viscarra 
Rossel and Lark, 2009). The Gaussian pyramid, or more precisely the 
related Laplacian pyramid, which is build from differences between 
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consecutive Gaussian octaves and forms a pyramid of high pass filters or 
estimates of second order derivatives, is closely related to the Mexican 
hat wavelet, which also has been applied for soil spectroscopy (Vohland 
et al., 2016). Wavelets are complete representations (linear independent 
or orthogonal basis functions) which are mostly used for denoising and 
data compression. In contrast, the Gaussian scale space is an over- 
complete (not linearly independent) representation (Smith, 2018; 
Guerrero-Colon et al., 2008). This redundancy is of advantage over non- 
redundant representations when robustness is required, as in image 
matching or digital soil mapping, and where additional intermediate 
scales further help to increase robustness and thus precision or predic-
tion accuracy (Smith, 2018; Guerrero-Colon et al., 2008; Lowe, 1999; 
Lindeberg, 2015; Behrens et al., 2018a). 

We use the Gaussian pyramid to be able to easily apply and test 
different derivatives (first and second order) on the Gaussian scales. 
Most publications published so far dealing with the use of wavelets in 
soil spectroscopy, focused on the modeling with the wavelet coefficients, 
which, in the case of commonly used Daubechies and Mexican hat 
wavelets (Viscarra Rossel and Lark, 2009; Vohland et al., 2016), corre-
spond to the second order derivative only. 

Our aims here are to explore the use of the Gaussian pyramid with 
vis–NIR spectra to: (i) denoise and systematically resample spectra in 
order to improve the predictive and explanatory accuracy of spectro-
scopic machine learning on single and combined scales and with 
different derivatives, and (ii) explore the presence of contextual cross- 
resolution interactions in the spectra. Our hypothesis is that such 
contextual cross-resolution interactions occur due to differences in 
sensor characteristics (cf. Section 2.6.1 and Section 2.6.2) and the 
physics of energy absorption by the soil constituents, which vary across 

the spectrum (Ge et al., 2007; Viscarra Rossel and Behrens, 2010). 
Hence, a potentially optimal resolution is expected to also vary across 
the spectrum, e.g. the resolution required at 700 nm might be different 
to the resolution required at 2100 nm, because generally the longer the 
wavelength the narrower the absorption features. 

The experiments were performed with vis–NIR spectra from an 
Australian dataset and the part of the LUCAS database available for 
Germany. We built models for soil organic carbon (OC) and clay content 
for the Australian data set and additionally for the pH-value for the 
LUCAS data set. 

2. Methods 

2.1. The Gaussian pyramid scale space 

A Gaussian pyramid is a hierarchical, multi-resolution (or multi- 
scale) representation of a signal, originally developed for multi-scale 
image analysis (Burt and Adelson, 1983; Adelson et al., 1983) and is 
used in many disciplines from image processing and computer vision to 
digital soil mapping (Burt and Adelson, 1983; Lowe, 1999; Behrens 
et al., 2018a; Behrens et al., 2018b). 

The scale decomposition in the Gaussian pyramid is based on two 
operations, smoothing and scaling, which are used to successively to 
reduce the resolution by half. A spectral pyramid is therefore a dyadic 
sequence Si, Si− 1,…, S0 of spectra (Fig. 2). Si has the same dimension and 
resolution as the original spectra and Si− 1 is derived from Si by reducing 
the number of spectral wavelenghts by half. S0 is the theoretically 
coarsest resolution consisting of one reflectance value only (Sonka et al., 
2014). 

Fig. 2. Reflectance, 1st derivative and 2nd derivative for the first 8 octaves (including the original reflectance data, octave 0) of the Gaussian pyramid, based on the 
average spectra of the Australian dataset. 
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Each downscaling step is computed by convolving the spectra with a 
Gaussian blur filter (Getreuer, 2013) followed by the actual downscaling 
step where all even-numbered wavelengths are removed. The Gaussian 
blur filter is used to avoid aliasing effects that may otherwise occur 
during downsampling. In this way all resolutions or octaves of the 
pyramid are constructed (Fig. 1). A mathematical description can be 
found in Adelson et al. (1983). 

In this study we derived 8 octaves from the original spectra, using a 
1D Gaussian kernel (Fig. 2). Octave 0 denotes the original spectrum. 

2.2. Preprocessing and derivatives 

To analyse the sole effect of scaling with the Gaussian pyramid, we 
do not apply any additional preprocessing such as smoothing, normal-
ization or binning methods (Savitzky and Golay, 1964; Barnes et al., 
1989; Gautam et al., 2015). We test the reflectance data as well as the 1st 
and 2nd order derivatives (D1 and D2) derived from each octave, which 
are used to reduce additive (baseline) and multiplicative (shape) scat-
tering effects between spectra and in turn can increase generalization 
accuracy (Blanco et al., 1997; Delwiche and Reeves, 2004; Rinnan et al., 
2009; Igne et al., 2010). We use finite differences to compute the 1st and 
2nd order derivatives. Fig. 2 shows the reflectance values (D0) for each 
octave of the Gaussian pyramid and the resulting derivatives D1 and D2. 

2.3. Machine learning with Cubist 

Cubist is a form of piece-wise linear decision tree (Quinlan, 1993; 
Kuhn and Quinlan, 2020). It recursively partitions the response variable 
into subsets defined by ’if’ and ’else’ rules, which are hierarchically 
arranged and can be based on a single or on multiple wavelenghts. If a 
condition is true, an ordinary least-squares regression is fitted using the 
data within that partition. Otherwise, the rule defines the next node in 
the tree. The predictions in the terminal node are also based on linear 
models. The n most similar training samples or neighbors are used to 
build an averaged ensemble prediction for each sample of the rule-based 
model in cubist. Additionally, comparable to boosting, multiple rule- 
based models can be combined, which is called committees (Kuhn and 
Quinlan, 2020). 

2.4. Resolution and contextual analysis 

To test effects of a joint influence and interactions between wave-
lengths from different octaves on prediction accuracy, we compared 
single resolution and two cross-resolution modeling approaches. 

2.4.1. Single resolution models 
For the single resolution models we extracted each octave of each 

feature set (reflectance, D1 and D2) to build separate machine learning 
models. In doing so, we can analyse the changes in validation accuracy 

Fig. 1. Filtering and resampling across 4 octaves of a Gaussian pyramid and the corresponding filter kernel used in this study.  
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across the octaves and for all derivatives. Hence, we can determine 
which feature set provides the highest predictive accuracy at which 
resolution. 

2.4.2. Full set models 
To analyse the joint effect of all octaves, we merged all features of all 

Gaussian pyramid octaves into a single model by concatenating the 
spectra of all octaves for each sample. Theoretically, this should provide 
the overall best results, because all possible features are included and all 
possible contextual interactions should be covered. However, effects of 
collinearity and potentially noisy features from fine resolutions as well 
as confounding effects, might have a negative impact on predictive ac-
curacy. Since this also depends on the machine learning approach, we do 
not further try to unravel these potential effects in this study. 

2.4.3. Additive coarse to fine resolution models 
To test the joint effect of multiple octave datasets on predictive ac-

curacy we successively added finer octaves to the model starting with 
the coarsest octave. This approach should attenuate the negative in-
fluences of additive and multiplicative noise, hyper-dimensionality and 
high collinearity, which are particularly prevalent at finer resolutions. 
This therefore should allow to detect possible cross-resolution in-
teractions within the relevant range of resolutions, which are found in 
other disciplines such as spatial data science (Behrens et al., 2018a; 
Behrens et al., 2019). Thus the resulting models are expected to be at 
least as good as the full set models. As with the single resolution models, 
the final additive model, i.e. the best combination of octaves, is selected 
based on the maximum accuracy achieved after evaluating all 
combinations. 

2.5. Validation and grid learning 

To assess the accuracy of the Cubist machine learning models we 
applied 10-times 10-fold cross-validation for the Australian dataset and 
3-times 10-fold cross-validation for the larger LUCAS dataset. We report 
the R2 and root mean squared error (RMSE) of the validations. 

For tuning the Cubist models we used a grid learning method and 
tested 0, 1, 3, 5, 7, and 9 neighbors as well as 1, 10, 25, 50, 75, and 100 
committees. 

2.5.1. Feature importance analysis 
We analysed feature importance to visualize and test the stability of 

the important features across the resolutions in the single resolution 
modeling approach. Here, we used the relative cubist variable-usage 
statistics (Kuhn and Quinlan, 2020). The primary aim is to analyse the 
changes in feature importance across the octaves, because such changes 
would result in different interpretations. If the assumption that a high 
predictive accuracy is required for a high explanatory accuracy (Mur-
doch et al., 2019) holds true, the single Gaussian pyramid octave with 
the highest validation accuracy should provide the basis for the most 
reliable interpretations. 

2.6. Data sets 

2.6.1. Australia 
The soil samples of the Australian dataset originated from Queens-

land, New South Wales, South Australia and Western Australia and were 
not sampled specifically for this work (Viscarra Rossel and Lark, 2009). 
Soils were sampled from different layers. Laboratory analysis of air- 
dried and ground (⩽2mm) samples were performed according to the 
methods described in Viscarra Rossel and Behrens (2010). 

The diffuse reflectance spectra of 742 soil samples were measured 
using the Agrispec vis–NIR spectrometer (Analytical Spectral Devices, 
Boulder, Colorado,USA) with a spectral range of 350–2500 nm. The 
spectral resolution of the dataset was 2 nm. Internally the spectrometer 
has a resolution of 3 nm at 700 nm and 10 nm at 1400 nm/2100 nm, but 

provides data at 1.4 to 2 nm. 

2.6.2. LUCAS, Germany 
The LUCAS 2015 topsoil dataset is a European vis–NIR library of 

topsoil samples (Stevens et al., 2013; Tóth et al., 2013; Jones et al., 
2020). We selected all samples located in Germany (LUCAS-DE) and 
removed all samples which did not comprise a full set of soil property 
analysis. This resulted in 1793 observations. 

The spectra with a range of 400–2500 nm and with a spectral reso-
lution of 0.5 nm were measured using a FOSS XDS Rapid Content 
Analyzer (FOSS NIR Systems Inc., Laurel, MD, USA). Same as the Agri-
spec the XDS Rapid Content Analyzer is a multi detector system. Due to 
artifacts in these spectra we removed the range between 400 to 480 nm, 
as suggested in Stevens et al. (2013). Finally, we resampled the data 
provided at a resolution of 0.5 nm to a resolution of 1 nm and used 
reflectance data for modeling. 

3. Results and discussion 

3.1. The Gaussian pyramid scale space 

3.1.1. Single octave models 
The results of the single octave cubist models show that on average as 

well as for the maximum validation accuracies the medium-scale octaves 
return the highest validation accuracies (Fig. 3 and 4). Overall the best 
models are based on octave 3, which, based on the initial resolutions of 
1 nm and 2 nm, equals a resolution of 8 nm and 16 nm, respectively. 
Octaves 6 and 7 with resolutions > 64 nm and 128 nm are too coarse for 
reasonable modeling, whereas modeling with the original resolutions is 
affected either by noise or and/or by collinearity. These results reflect 
the fact that, in the vis–NIR region, the spectral features of the light 
absorbing components of the soil are usually wider (⪆ 8 nm; (McCarty 
et al., 2002; Viscarra Rossel et al., 2006)). 

In most cases D1 returned the most accurate validations (Table 1). 
Even though, the differences between D1 and D2 are generally small, we 
suggest to test both to determine the optimal derivative when working 
with the Gaussian pyramid. The raw reflectance data is less resolution 
dependent compared to the derivatives and in most cases it showed, on 
average, the smallest increase in accuracy across the first four octaves. 
Figs. 3 and 4 show that the higher the order of the derivative the coarser 
the best average resolution. This is related to noise in the reflectance 
data which is emphasized in the derivatives and proportionally ampli-
fied with the order of the derivative. The final differences in terms of R2 

between the best single octave raw data model and the best single octave 
derivative model is up to 6 percent for clay content of the LUCAS-DE 
dataset. 

3.1.2. Cross-resolution models 
To analyse the effect of noisy and highly collinear predictors as well 

as to test if there is additional relevant information in the context, i.e. in 
a mixture of octaves, we built models of all features across all resolutions 
and used the additive coarse to fine resolution modeling approach. 

Interestingly, the single octave modeling approaches outperform 
modeling with the full features set. It is also on par with the additive 
approach with minimal differences in both datasets. There is a slight 
advantage for the additive approach for the LUCAS-DE data and a 
similar advantage for the single resolution approach for the Australian 
data. 

The inclusion of finer resolution octaves in the additive approach 
generally increases the prediction accuracy up to a certain resolution. 
From there on, the prediction accuracy decreases as additional octaves 
of finer resolution are added to the model. The finest octave that gives 
the best prediction accuracy in the additive approach is similar to the 
octave of the best single resolution model. This shows that there is no 
substantial information gain or contextual relationships when using 
multiple resolutions in a single model. This also shows the robustness of 
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the approach against noise as well as the stability of the single octave 
approach (cf. Section 3.1.1). 

3.1.3. Feature importance across Gaussian octaves 
An advantage of the single resolution approach is that feature 

importance can be analysed separately for each octave, which can be 
important for interpreting the modeling results. Based on the results 
presented in this study interpretation should be conducted for the res-
olution with the highest validation accuracy. 

Figs. 5 and 6 show the feature importance of D1 and D2 for the first 
six octaves for clay content for the Australian dataset as an example. It 
shows a pronounced change in the importance of spectral regions from 
octave 0 to octave 3, especially for D2. While at the original resolution 
the regions between 600–800 nm, 1400 nm and 1900 nm are most 
important for D1 and D2, the region around 2150 nm is important as 
well regarding D1. At octave 1 the importance of the 600–800 nm range 
is reduced for both derivatives. The important regions at octave 3, which 
is the octave with the highest predictive accuracy, are much more 
consistent between the derivatives and show 6 important regions 
located approximately between 450–650 nm, 1300–1500 nm, 
1600–1900 nm, 1900–2000 nm and 2100–2200, and 2300–2400 nm. 
These regions are representative of iron oxides (hematite and goethite) 
but also organic matter, Al–OH in clay minerals, organic matter, as well 
as water present in interlayers of 2:1 clay minerals such as smectite, 
kaolinite and illite, respectively, and were also identified in other studies 
(Viscarra Rossel and Behrens, 2010). The changes in importance across 
the octaves, especially for D2, clearly shifts the interpretation towards 
clay minerals. Similar effects are visible for OC content as well (data not 

shown). The relative increase in significance at 2200–2400 nm is likely 
due to a decrease in noise from octave 3 onward. 

Looking at the same property for the LUCAS-DE dataset shows 
comparable effects (Fig. 7 and 8). The range between 500 nm and 1300 
nm seems to be irrelevant for interpreting clay content on the original 
resolution of D1. At octave 3 this has changed. 

Moreover, there are significant differences between the 1st and 2nd 
derivatives in the two data sets when interpreting the relationship be-
tween the spectra and clay content based on octave 0. However, on 
octave 3 the interpretations would be rather similar even across the 
different datasets representative for temperate and tropical soil 
chemistry. 

4. Related methods 

One of the most interesting features of the Gaussian pyramid scale 
space is its technical simplicity and robustness. This could be an 
advantage over other approaches like the closely related wavelet 
transforms or convolutional neural networks (CNN). 

Viscarra Rossel and Lark (2009) presented an approach based on 
wavelet coefficients that orders the data of multiple resolutions along 
their variances and used this as a basis to create parsimonious cross- 
resolution models. The multi-resolution approaches presented here 
can also be applied to wavelets and the variance ordering approach to 
Gaussian pyramid data. Consequently, future research should compare 
these two concepts for soil spectroscopy. The same holds true for other 
data reduction approaches such as the uniform-interval wavelength 
reduction (Yang et al., 2012). 

Fig. 3. Predictive accuracy [R2] of the different single or combined (additive) resolution models for clay and organic carbon (OC) of the Australian dataset based on 
cubist. The vertical lines mark the octaves or additive octaves of the respective highest model accuracies. 
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One of the latest additions to the soil spectroscopy toolbox is CNNs 
(Liu et al., 2018; Padarian et al., 2019; Shen and Viscarra Rossel, 2021; 
Ng et al., 2019; Tsakiridis et al., 2020; Zhong et al., 2021; Viscarra 
Rossel et al., 2022; Shen et al., 2022). 

Just like the Gaussian pyramid, these powerful neural networks 
originate from image analysis. Similar to the Gaussian pyramid pre-
sented here, a CNN derives several resolutions and derivatives. The main 
difference is that these steps are part of the CNN itself, while a Gaussian 
pyramid is feature engineering in terms of pre-processing conducted 
before the application of a machine learning algorithm (Behrens et al., 

2018a). The increase in prediction accuracy in soil spectroscopic studies 
when using CNNs compared to other modeling approaches is not very 
pronounced (Tsakiridis et al., 2020). This might reflect the finding of 
this study that cross-resolution interactions are negligible. Therefore, a 
comparison of the Gaussian pyramid approach with CNNs will be useful 
to further analyse the effects of multi-resolution interactions and 
derivatives. 

Fig. 4. Predictive accuracy [R2] of the different single or combined (additive) resolution models for clay and organic carbon (OC) of the LUCAS-DE dataset based on 
cubist. The vertical lines mark the octaves or additive octaves of the respective highest model accuracies. 

Table 1 
Cross-validated vis–NIR modeling results for best single resolution (single), full set and additive coarse to fine resolution (additive) cubist models with Gaussian 
pyramid inputs. AUS is the Australian dataset (Viscarra Rossel and Lark, 2009). LUCAS-DE is the subset of the LUCAS collection from Germany. OC is the organic 
carbon content.  

Data Property Method Deriv. Octave Features RMSE R2     

AUS OC [%] Single 1 3 135 0.74 0.89       
Full set 2 0–8 2151 0.79 0.88       
Additive 1 3–8 268 0.75 0.89      

Clay [%] Single 1 3 135 6.60 0.87       
Full set 1 0–8 2151 7.00 0.86       
Additive 2 3–8 268 6.62 0.87                 

LUCAS-DE OC [g/kg] Single 1 2 504 14.10 0.69       
Full set 1 0–8 4021 14.19 0.68       
Additive 1 2–8 1001 14.09 0.69      

Clay [%] Single 1 2 504 4.88 0.83       
Full set 1 0–8 4021 4.99 0.82       
Additive 2 2–8 1001 4.94 0.83      

pH Single 2 3 252 0.38 0.91       
Full set 1 0–8 4021 0.37 0.90       
Additive 2 3–8 497 0.36 0.92      
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Fig. 5. Changes in feature importance values across different octaves of the 1st order derivative of the Gaussian pyramid for clay of the Australian dataset.  

Fig. 6. Changes in feature importance values across different octaves of the 2nd order derivative of the Gaussian pyramid for clay of the Australian dataset.  

Fig. 7. Changes in feature importance values across different resolutions of the 1st order derivative of the Gaussian pyramid for clay of the LUCAS-DE dataset.  
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5. Conclusions 

The Gaussian pyramid provides a systematic solution for the analysis 
of spectra, to achieve accurate and interpretable predictions. Thus it can 
support knowledge discovery and decision making. 

There were no prevalent context-dependent interactions or cross- 
resolution effects in the vis–NIR data sets tested. However, studies 
should be performed with mid infrared (MIR) spectra where we might 
expect more contextual interactions. 

The advantage of single resolution models is their interpretability. 
We could show that the feature importance for a soil property becomes 
stable at the single resolution with the highest prediction accuracy even 
across different data sets. This underlines the importance of a careful 
selection of suitable resolutions for noise reduction, modeling and 
interpretation. A further advantage of the Gaussian pyramid is dimen-
sionality reduction, which can allow to run context-dependent and 
automated model tuning for spectroscopic estimation in more rapid and 
memory-efficient ways. In this respect, the Gaussian pyramid offers an 
effective approach to modeling and analysing vis–NIR spectra. 

Data and code availability 

The LUCAS data are available online at https://esdac.jrc.ec.europa. 
eu/content/lucas-2009-topsoil-data after request. The code is available 
from the corresponding author upon reasonable request. 
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